abbasibe.persianblog.ir Website Value
Website Value Calculator Recall (memory) - آموزش انگلیسی به عنوان زبان دوم

آموزش انگلیسی به عنوان زبان دوم

بانک سوالات دبیرستان و پیش دانشگاهی . مکالمه . مقالات . آپدیت روزانه Nod 32

Recall (memory)
نویسنده : غلامعلی عباسی - ساعت ۱٠:٠۸ ‎ب.ظ روز ۱۳٩۱/٦/۱٤
 

 

From Wikipedia, the free encyclopedia

  (Redirected from Recollection)

Jump to: navigation, search

"Recollection" redirects here. For other uses, see Recollection (disambiguation).

Recall in memory refers to the retrieval of events or information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans[1] and animals.[2] Two main theories of the process of recall are the Two-Stage Theory and the theory of Encoding Specificity.

 

Recall (memory)

From Wikipedia, the free encyclopedia

  (Redirected from Recollection)

Jump to: navigation, search

"Recollection" redirects here. For other uses, see Recollection (disambiguation).

Recall in memory refers to the retrieval of events or information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans[1] and animals.[2] Two main theories of the process of recall are the Two-Stage Theory and the theory of Encoding Specificity.

    •  

Theories

Austin Simonson theory

The Austin Simonson theory states that the process of recall begins with a search and retrieval process, and then a decision or recognition process where the correct information is chosen from what has been retrieved. In this theory, recognition only involves the latter of these two stages, or processes, and this is thought to account for the superiority of the recognition process over recall. Recognition only involves one process in which error or failure may occur, while recall involves two.[3] However, recall has been found to be superior to recognition in some cases, such as a failure to recognize words that can later be recalled.[4]

Encoding specificity

The theory of encoding specificity finds similarities between the process of recognition and that of recall. The encoding specificity principle states that memory utilizes information from the memory trace, or the situation in which it was learned, and from the environment in which it is retrieved. Encoding specificity helps to take into account context cues because of its focus on the retrieval environment, and it also accounts for the fact recognition may not always be superior to recall.[4]

History

Philosophical questions regarding how people acquire knowledge about their world spurred the study of memory and learning.[5] Recall is a major part of the study of memory and often comes into play in all research. For this reason, the main studies on memory in general will also provide a history to the study of recall.

 

 

In 1885, Hermann Ebbinghaus created nonsense syllables, combinations of letters that do not follow grammatical rules and have no meaning, to test his own memory. He would memorize a list of nonsense syllables and then test his recall of that list over varying time periods. He discovered that memory loss occurred rapidly over the first few hours or days, but showed a more steady, gradual decline over subsequent days, weeks, and months. Furthermore, Ebbinghaus discovered that multiple learning, over-learning, and spacing study times increased retention of information.[6] Ebbinghaus’ research influenced much of the research conducted on memory and recall throughout the twentieth century.

Frederic Bartlett was a prominent researcher in the field of memory during the mid-twentieth century. He was a British experimental psychologist who focused on the mistakes people made when recalling new information. One of his well known works was Remembering: A Study in Experimental and Social Psychology, which he published in 1932. He is well known for his use of North American Native folk tales, including The War of the Ghosts.[7] He would provide participants in his study with an excerpt from a story and then asked them to recall it as accurately as they could.[7] Retention intervals would vary from directly after reading the story to days later. Bartlett found that people strive for meaning, by attempting to understand the overall meaning of the story. Since the folk tale included supernatural elements, people would rationalize them to make them fit better with their own culture. Ultimately, Bartlett argued that the mistakes that the participants made could be attributed to schematic intrusions.[7] Their current sets of knowledge intruded on their accurately recalling the folk tale.

In the 1950s there was a change in the overall study of memory that has come to be known as the cognitive revolution. This included new theories on how to view memory, often likening it to a computer processing model. Two important books influenced the revolution: Plans and Structures of Behavior by George Miller, Eugene Galanter, and Karl H. Pribram in 1960 and Cognitive Psychology by Ulric Neisser in 1967.[5] Both provided arguments for an information-processing view of the human mind. Allen Newell and Herbert A. Simon constructed computer programs that simulated the thought processes people go through when solving different kinds of problems.[8]

In the 1960s, interest in short-term memory (STM) increased. Before the 1960s, there was very little research that studied the workings of short-term memory and rapid memory loss. Lloyd and Margaret Peterson observed that when people are given a short list of words or letters and then are distracted and occupied with another task for few seconds, their memory for the list is greatly decreased.[5] Atkinson and Shiffrin (1973) created the short term memory model, which became the popular model for studying short term memory.[9]

The next major development in the study of memory recall was Endel Tulving’s proposition of two kinds of memory: episodic and semantic. Tulving described episodic memory as a memory about a specific event that occurred at a particular time and place, for example what you got for your 10th birthday. Semantic memories are abstract words, concepts, and rules stored in long-term memory.[10] Furthermore, Endel Tulving devised the encoding specificity principle in 1983, which explains the importance of the relation between the encoding of information and then recalling that information. To explain further, the encoding specificity principle means that a person is more likely to recall information if the recall cues match or are similar to the encoding cues.[11]

The 1960s also saw a development in the study of visual imagery and how it is recalled. This research was led by Allan Paivio, who found that the more image-arousing a word was the more likely it would be recalled in either free recall or paired associates.[12]

There has been a considerable amount of research into the workings of memory, and specifically recall since the 1980s. The previously mentioned research was developed and improved upon, and new research was and still is being conducted.

Types

Free recall

Free recall describes the process in which a person is given a list of items to remember and then is tested by being asked to recall them in any order.[5] Free recall often displays evidence of primacy and recency effects. Primacy effects are displayed when the person recalls items presented at the beginning of the list earlier and more often. The recency effect is when the person recalls items presented at the end of the list earlier and more often.[5]

Cued recall

Cued Recall is when a person is given a list of items to remember and is then tested with cues to remember material. Researchers have used this procedure to test memory. Participants are given pairs, usually of words, A1-B1, A2-B2…AL-BL, (L is the number of pairs in a list) to study. Then the experimenter gives the participant a word to cue the participant to recall the word with which it was originally paired. The word presentation can either be visual or auditory.

There are two basic experimental methods used to conduct cued recall, the study-test method and the anticipation method. In the study-test method participants study a list of word pairs presented individually. Immediately after or after a time delay, participants are tested in the study phase of the experiment on the word pairs just previously studied. One word of each pair is presented in a random order and the participant is asked to recall the item with which it was originally paired. The participant can be tested for either forward recall, Ai is presented as a cue for Bi, or backward recall, Bi is presented as a cue for Ai. In the anticipation method, participants are shown Ai and are asked to anticipate the word paired with it, Bi. If the participant cannot recall the word, the answer is revealed. During an experiment using the anticipation method, the list of words is repeated until a certain percentage of Bi words are recalled.

The learning curve for cued recall increases systematically with the number of trials completed. This result has caused a debate about whether or not learning is all-or-none. One theory is that learning is incremental and that the recall of each word pair is strengthened with repetition. Another theory suggests that learning is all-or-none, that is one learns the word pair in a single trial and memory performance is due to the average learned pairs, some of which are learned on earlier trials and some on later trials. To examine the validity of these theories researchers have performed memory experiments. In one experiment, Irwin Rock University of Illinois had a control group and experimental group learn pairs of words. The control group studied word pairs that were repeated until the participants learned all the word pairs. In the experimental group, the learned pairs remained in the list while unlearned pairs were substituted with recombinations of previous words. Rock believed that associations between two items would be strengthened if learning were incremental even when pairs are not correctly recalled. His hypothesis was that the control group would have a higher correct recall probability than the experimental group. He thought that repetition would increase the strength of the word pair until the strength reaches a threshold needed to produce an overt response. If learning were all or none, then the control group and the experimental group should learn the word pairs at the same rate. Rock found experimentally there was little difference in learning rates between the two groups. However, Rock’s work did not settle the controversy because in his experiment he rearranged replaced word pairs that could be either easier or harder to learn than the original words in the word- digit pair. In further experiments that addressed the question, there were mixed results. The incremental learning hypothesis is supported by the notion that awhile after Ai-Bi pairs are learned, the recall time to recall Bi decreases with continued learning trails.[13]

Another theory that can be tested using cued recall is symmetry of forward and backward recall. Forward recall is generally assumed to be easier than backward recall, i.e. forward recall is stronger than backward recall. This is generally true for long sequences of word or letters such as the alphabet. In one view, the independent associations hypothesis, the strength of forward and backward recall are hypothesized to be independent of each other. To confirm this hypothesis, Dr. George Wolford tested participants’ forward and backward recall and found that forward and backward recall are independent of each other. The probability of correct forward recall was .47 for word pair associations and the probability of correct backward recall of word pair associations was .25.[14] However in another view, the associative symmetry hypothesis, the strengths of forward and backward recall are about equal and highly correlated. In S.E Asch from Swathmore College and S. M Ebenholtz’s experiment, participants learned pairs of nonsense syllables by anticipation recall. After reaching a certain threshold of learning, the participants were tested by free recall to determine all pairs and single items they could remember. These researchers found that backward association was greatly weaker than forward association. However, when the availability of forward and backward recall were basically the same, there was little difference between forward and backward recall.[15] Some scientists including Asch and Ebenholtz believe in the independent association hypothesis think that the equal strengths of forward and backward recall are compatible with their hypothesis because forward and backward recall could be independent but with equal strengths. However associative symmetry theorists interpreted the data to mean that the results fit their hypothesis.

Another study done using cued recall found that learning occurs during test trials. Mark Carrier and Pashler (1992) found that the group with a study-only phase makes 10% more errors than the group with a test-study phase. In the study-only phase, participants were given Ai-Bi, where Ai was an English word and Bi was a Siberian Eskimo Yupik word. In the test study phase, participants first attempted to recall Bi given Ai as a cue then they were shown Ai-Bi pair together. This result suggests that after participants learn something, testing their memory with mental operations helps later recall. The act of recalling instead of restudying creates new and longer lasting connection between Ai and Bi.[16]

Another study showed that when lists are tested immediately after study, the last couple of pairs are remembered best. After a five second delay, the recall of recently studied words diminishes. However, word pairs at the beginning of a list still show better recall. Moreover, in a longer list, the absolute number of word pairs recalled is greater but in a shorter list of word pairs, the percentage of word pairs recalled is greater.

Sometimes, when recalling word pairs, there is an intrusion. An intrusion is an error that participants make when they attempt to recall a word based on a cue of that word pair. Intrusions tend to have either semantic attributes in common with the correct word not recalled or have been previously studied in another word pair on the current list or a previously studied list or were close in time to the cue item. When two items are similar, an intrusion may occur. Professor Kahana and Marieke Vugt at the University of Pennsylvania examined the effects of face similarity for face-name associations. In the first experiment, they wanted to determine if performance of recall would vary with the number of faces in the study set similar to the cue face. Faces were similar if the radius of the faces were within a range. The number of faces within a radius is called a neighborhood density. They found that the recall of a name to face exhibited a lower accuracy and slower reaction time for faces with a greater neighborhood density. The more similarity that two faces have, the greater the probability for interference between the two faces. When cued with face A name B may be recalled if face A and B are similar. The probability of correct recall came from the number of faces with similar faces.[17]

Cues act as guides to what the person is supposed to remember. A cue can be virtually anything that may act as a reminder, e.g. a smell, song, color, place etc. In contrast to free recall, the subject is prompted to remember a certain item on the list or remember the list in a certain order. Cued recall also plays into free recall because when cues are provided to a subject, they will remember items on the list that they did not originally recall without a cue. Tulving explained this phenomenon in his research. When he gave participants associative cues to items that they did not originally recall and that were thought to be lost to memory, the participants were able to recall the item.[18]

Serial recall

Serial recall is the ability to recall items or events in the order in which they occurred.[19] The ability of humans to store items in memory and recall them is important to the use of language. Imagine recalling the different parts of a sentence, but in the wrong order. The ability to recall in serial order has been found not only in humans, but in a number of non-human primate species and some non-primates.[2] Imagine mixing up the order of phonemes, or meaningful units of sound, in a word so that "slight" becomes "style." Serial-order also helps us remember the order of events in our lives, our autobiographical memories. Our memory of our past appears to exist on a continuum on which more recent events are more easily remembered in order.[19]

Serial recall in long-term memory (LTM) differs from serial recall in short-term memory (STM). To store a sequence in LTM, the sequence is repeated over time until it is represented in memory as a whole, rather than as a series of items. In this way, there is no need to remember the relationships between the items and their original positions.[2] In STM, immediate serial recall (ISR) has been thought to result from one of two mechanisms. The first refers to ISR as a result of associations between the items and their positions in a sequence, while the second refers to associations between items. These associations between items are referred to as chaining, and according to research it is an unlikely mechanism. Position-item relationships do not account for recency and primacy effects, or the phonological similarity effect. The Primacy Model moves away from these two assumptions, suggesting that ISR results from a gradient of activation levels where each item has a particular level of activation that corresponds to its position.[20] Research has supported the fact that immediate serial recall performance is much better when the list is homogenous (of the same semantic category) than when they are heterogeneous (of different semantic category). This suggests that semantic representations are beneficial to immediate serial recall performance.[21] Short-term serial recall is also affected by similar sounding items, as recall is lower (remembered more poorly) than items that do not sound alike. This is true when lists are tested independently (when comparing two separate lists of similar sounding and not similar sounding items) as well as when tested using a mixed list. Alan Baddeley first reported such an experiment in which items within a list were either mutually dissimilar or highly similar.

There is evidence indicating that rhythm is highly sensitive to competing motor production. Actions such as paced finger tapping can have an effect on recall as the disruptive impact of paced finger tapping, but lack of consistent effect of paced irrelevant sound, is indicative of motor feedback from the tapping task disrupting rehearsal and storage.[22]

Seven different effects are generally seen in serial recall studies with humans:

1. List length effect

Ability to serial recall decreases as the length of the list or sequence increases.

2. Primacy and recency effects

Primacy effects refer to better recall of items earlier in the sequence, while recency effects refer to better recall of the last few items. Recency effects are seen more with auditory stimuli rather than verbal stimuli as auditory presentation seems to protect the end of lists from output interference.[23]

3. Transposition gradients

Transposition gradients refer to the fact that recall tends to be better to recognize what an item is rather than the order of items in a sequence.

4. Item confusion errors

When an item is incorrectly recalled, there is a tendency to respond with an item that resembles the original item in that position.

5. Repetition errors

These occur during the recall of a sequence when an item from an earlier position in the sequence is given again in another position. This effect is fairly rare in humans.

6. Fill-in effects

If an item is recalled incorrectly at an earlier position than its original place, there is a tendency for the next item recalled to be the item that was displaced by this error. For example, if the sequence is '1234' and recall began '124', then the next item is likely to be ‘3’.

7. Protrusion effects

These occur when an item from a previous list or test is accidentally recalled on a new list or test. This item is likely to be recalled at its position from the original trial.[2]

8. Word-length effects Short words are recalled more accurately than longer words. [24]